

ZERO Exchange

Smart Contract Audit

Report date January 15th, 2021

Report version 1.0

PASS

Zokyo’s Blockchain Security Team has

concluded that this smart contract passes

security qualifications to be listed on digital

asset exchanges.

Technical​ ​Summary

This document outlines the overall security of the ZERO Exchange smart contracts,

evaluated by Zokyo's Blockchain Security team.

The scope of this audit was to analyze and document ZERO Exchange, ZERO Bridge, and

the ZERO Token smart contract codebase for quality, security, and correctness.

There were no critical issues found during the audit. (See ​Complete Analysis​)

It should be noted that this audit is not an endorsement of the reliability or

effectiveness of the contract, rather limited to an assessment of the logic and

implementation. In order to ensure a secure contract that’s able to withstand the

Ethereum network’s fast-paced and rapidly changing environment, we at Zokyo

recommend that the ZERO Exchange team put in place a bug bounty program to

encourage further and active analysis of the smart contract.

Table of Contents

Auditing Strategy and Techniques Applied

Summary

Structure​ ​and​ ​Organization​ ​of​ ​Document

Complete​ ​Analysis

Informational,​ Unresolved:​ Overpowered role

Auditing Strategy and Techniques Applied

The Smart contract’s source code was taken from:

1) ZERO Exchange: the ​contracts​ repo ​master​ branch (commit - _____)

2) ZERO Bridge: the _____ repository ______ branch (commit - _____)

3) ZERO Token: the _____ repository ______ branch (commit - _____)

Requirements: ZERO Exchange contracts are the fork of the Uniswap contracts and

inherit the logic from Uniswap exchange. ZERO Bridge contracts are the fork of the

ChainBridge system and inherit all the logic. ZERO Token is the standard ERC-20 token

which implements ERC-3009.

ZERO Exchange consists of:

1. ZEROERC20.sol - Liquidity Pool token.

2. ZEROFactory.sol - Factory for deployment of Liquidity Pools.

3. ZEROPair - Liquidity Pool.

ZERO Bridge consists of:

1. Bridge.sol - contract with bridging logic.

2. ERC20Handler.sol - service contract with logic for managing the ERC20

transfers to/from bridge.

3. ERC721Handler.sol - service contract with logic for managing the ERC721

transfers to/from bridge.

ZERO Token is:

1. ZERO.sol - pure ERC-20 logic with ERC-3009 implementation for enabling

metatransactions.

https://github.com/zeroexchange/contracts
https://github.com/zeroexchange/contracts/tree/master/contracts

Throughout the review process, care was taken to ensure that the contracts:

● Implements and adheres to existing Token standards appropriately and

effectively;

● Documentation and code comments match logic and behavior;

● Distributes tokens in a manner that matches calculations;

● Follows best practices in efficient use of gas, without unnecessary waste;

● Uses methods safe from reentrance attacks;

● Is not affected by the latest vulnerabilities;

● Whether the code meets best practices in code readability, etc.

Zokyo’s Security Team has followed best practices and industry-standard techniques to

verify the implementation of xBTC smart contracts. To do so, the code is reviewed

line-by-line by our smart contract developers, documenting any issues as they are

discovered. Part of this work includes writing a unit test suite using the Truffle testing

framework. In summary, our strategies consist largely of manual collaboration between

multiple team members at each stage of the review:

1. Due diligence in assessing the overall code quality of the codebase.

2. Cross-comparison with other, similar smart contracts by industry leaders.

3. Testing contract logic against common and uncommon attack vectors.

4. Thorough, manual review of the codebase, line-by-line.

Summary

There were no critical issues found during the ​manual audit​. All the mentioned findings

may have effect only in case of specific conditions performed by the contract creator or

contract owner. Also, there are no issues related to compliance with requirements. It is

strongly recommended to fix mentioned low severity findings and setup multisig

contract for managing admin-only functionality (set FeeTo, FeeToSetter in Factory

contract). Although there are no issues with medium and higher severity level.

Structure​ ​and​ ​Organization​ ​of​ ​Document

For ease of navigation, sections are arranged from most critical to least critical. Issues

are tagged “Resolved” or “Unresolved” depending on whether they have been fixed or

addressed. Furthermore, the severity of each issue is written as assessed by the risk of

exploitation or other unexpected or otherwise unsafe behavior:

● Informational​ ​​- The issue has no impact on the contract’s ability to operate.

● Low​ ​- The issue has minimal impact on the contract’s ability to operate.

● Medium​ ​- The issue affects the ability of the contract to operate in a way that

doesn’t significantly hinder its behavior.

● High​ ​- The issue affects the ability of the contract to compile or operate in a

significant way.

● Critical​ ​- The issue affects the contract in such a way that funds may be lost,

allocated incorrectly, or otherwise result in a significant loss.

Complete​ ​Analysis

Low severity,​ Unresolved:​ Lack of zero-check

● ERC20Handler.sol, line 39: constructor lacks a zero-check on “bridgeAddress”

address

● GenericHandler.sol, line 71: constructor lacks a zero-check on “bridgeAddress”

address

● ERC721Handler.sol, line 47: constructor lacks a zero-check on “bridgeAddress”

address

Informational,​ Unresolved:​ Overpowered role

Factory.sol: The FeeTo and FeeToSetter addresses have unique permissions to change

the setter and collect the fees. It is strongly recommended to setup the multisig

contract and assign it these roles.

Informational,​ Unresolved:​ Different Solidity versions

Different pragma directives are used. Version used: 0.6.12, ^0.6.0, ^0.6.2

Informational,​Unresolved:​ State variables that could be declared

constant

State variables should be constant to save gas:

1. Bridge.sol, line 22: _chainID

2. Bridge.sol, line 25: _expiry

Informational,​Unresolved:​ Variables that could be declared external

There are many public variables in the Bridge contracts that could be declared external

to save gas.

We are grateful to have been given the opportunity to work with the ZERO Exchange
team.

The statements made in this document should not be interpreted as investment

or legal advice, nor should its authors be held accountable for decisions made

based on them.

Zokyo's Security Team recommends that the ZERO Exchange team put in place a bug

bounty program to encourage further analysis of the smart contract by third parties.

